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Abstract

Forchheimer terms are developed for the macroscopic momentum and energy balance equations
considering saturated thermoelastic porous media, and for the macroscopic momentum balance
equations in the case of multiphase porous media. It is shown that these terms represent the exchange
between the interacting phases at their common interface. Using these Forchheimer terms, a very good
agreement was evident when the 1-D numerical simulation of the propagation of compaction waves in a
saturated thermoelastic porous medium was compared with shock tube experiments. # 1999 Elsevier
Science Ltd. All rights reserved.

Keywords: Saturated or multiphase porous media; Mass, momentum and energy balance equations; Forchheimer
terms; Compaction and shock waves; 1-D numerical simulation; Shock tube experiments

1. Introduction

Macroscopic mass, momentum and energy balance equations for the ¯uid phase and the
solid matrix were formulated on the basis of representative elementary volume (REV) concepts
by Bear and Bachmat (1990). Based on these, Bear and Sorek (1990) developed the dominant
macroscopic forms of the mass and momentum balance equations following an abrupt pressure
impact in saturated porous materials under isothermal conditions. It was shown that during a
certain time period due to the domination of momentum inertial terms, the ¯uid momentum
balance equation conforms to nonlinear wave equations form. This initiated the establishment
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of the macroscopic theoretical basis for wave motion in multiphase deformable porous media.
Bear et al. (1992) and Sorek et al. (1992) elaborated on these for the case of thermoelastic
porous media, describing the theoretical basis for obtaining displacement and shock waves,
respectively.
These models, however, excluded the possibility of the exchange of inertia through the solid±

¯uid interface. Following Sorek et al. (1992), Levy et al. (1995) introduced additional
Forchheimer terms and obtained a variety of nonlinear wave equation forms. These, together
with the development of the evolving balance equations following an abrupt simultaneous
change of the ¯uid temperature and pressure, are the major novel theoretical aspects with
respect to Nikolaevskij (1990).
Olim et al. (1994) applied the continuum mixture theory to model the saturated porous

medium as an interaction between ¯uid and dust particles. In the phases momentum balance
equations, they replaced the drag force by Darcy±Forchheimer forces. They ,however, noted
correctly that such an approach could be justi®ed only for in®nitely weak foams in which the
internal stresses were negligibly small.
We mostly ®nd in the literature (Hsu and Cheng, 1990; Nield, 1991, 1994) that the

Forchheimer term is referred to as being a drag force. Hsu and Cheng (1990) based their
development on drag coe�cients which assumed speci®c forms so as to be analogous to
empirical forms of Darcy and Forchheimer terms. Nield (1991, 1994) introduced integral
expressions of the pressure gradient at the solid±¯uid interface. This, without any mathematical
development, was then referred to as being equivalent to the empirical forms of Darcy and
Forchheimer terms. Mei and Auriault (1991) applied a perturbation method to the variations
about the ¯uid velocities and its pressure; this, in reference to the microscopic steady state N.S.
equations of the ¯uid momentum balance. As a result, they obtained balance equations valid
for three di�erent orders of magnitude. The results of the 2nd order incorporated velocities
with a third power. This mathematical development has no physical ground. Forchheimer
terms, however, incorporate 2nd power velocities and are in line with the inertial terms. A
similar development was presented by Wodie and Levy (1991). Using the perturbation method,
they arrived at a velocity with a fourth power which was claimed (without proof) to be
canceled in the case of macroscopic isotropy. The ®nal form, however, was with a velocity
having a power of three. The perturbation method was also applied by Tiziana (1997). It was
claimed that the Forchheimer terms were obtained from Brinkman's drag terms stipulating that
the permeability tensor was a function of the ¯uid velocity. Whitaker (1996) obtained
macroscopic momentum balance equations by averaging its micorscopic form. The author
maintained that Forchheimer terms emerged from Brinkman's microscopic drag term being
transfered through the common solid±¯uid interface. He thus arrived at a form which involved
the product between the ¯uid velocity and a gradient of a tensor which mapped the deviation
of the velocity onto its average value. Not only did such a product not yield a square power
for the velocities, but also it was stipulated (without proof) that this tensor was a function of
the velocity terms.
Based on Levy et al. (1995) and Levy (1995), we will develop rigorous mathematical

macroscopic expressions accounting for Forchheimer terms representing the microscopic
inertial transfer through a common phases interface when describing the ¯ow phenomenon in
saturated and multiphase porous media. We will then show the signi®cance of such terms by
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comparing the 1-D numerical simulation of compaction waves propagating through a saturated
thermoelastic porous medium with experimental observations.

2. Averaging rules

To demonstrate the averaging technique and the form of the macroscopic equations that
they yield, we follow Bear and Bachmat (1990) for the case of a porous medium of general
local geometry.
The average of an intensive variable, ea, of the a-phase (a0f, s where f denotes the ¯uid

phase and s denotes the solid phase) within the REV is given by,

ea
a � 1

Ua

�
U0

ea dU0 �1�

where Uo denotes the volume of the REV, and Ua denotes the volume of the a-phase within
U0. Corresponding averages are de®ned for time and space derivatives, taking into account
both the changes in the averaged quantities ea

a and the ¯uxes through the REV boundaries.
Average of a time derivative

ya
@e

a

@t
� @yae

a

@t
ÿ 1

U0

�
Sas

eu � xxx ds �2�

where ya denotes the volumetric fraction of the a-phase within the REV, for saturated porous
media, this equals the porosity f (i.e. yf =f). The interface between the a-phase and the solid
phase (a0s) is denoted by Sas, u denotes the velocity of the (possibly moving) a surface and xxx
denotes a unit vector perpendicular to that interface.
Average of a spatial derivative

ya
@e

a

@xi
� @yae

a

@xi
� 1

U0

�
Sas

eaxi ds: �3�

A modi®ed rule for averaging a spatial derivative

@e
a

@xi
� @e

a

@xj
T*aij �

1

fU0

�
Sas

x
�
i
@e

@xj
xj ds �4�

where xÊi denotes the ith coordinate of a point in the REV relative to the REV's centroid.
Bachmat and Bear (1986), assumed that the modi®ed rule can be justi®ed for the ¯uid pressure
(P) for a case H 2P=0. The tensorial tortuosity coe�cient, T*aij, appearing in (4) is de®ned by

T*aij �
1

fU0

�
Saa

x
�
ixj ds �5�
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where Saa denotes the a±a part of the REV boundary. This macroscopic coe�cient re¯ects the
microscopic con®guration of the solid±¯uid interface.

3. Macroscopic balance equations

3.1. Saturated thermoelastic porous media

Bear and Bachmat (1990) applied averaging rules such as those given by equations (1)±(5) to
the microscopic balance equations of both phases in a saturated porous medium to obtain the
macroscopic balance equations for a compressible Newtonian ¯uid and a thermoelastic solid
matrix. The phases macroscopic balance equations, neglecting their dispersive ¯ux terms, read
as follows.

3.1.1. Fluid mass balance equation

@

@t
frf

f � ÿr � frffVf
f
: �6�

3.1.2. Solid mass balance equation

@

@t
�1ÿ f�rss � ÿr � �1ÿ f�rssVs

s
: �7�

3.1.3. Fluid momentum balance equation

frf
f Df

Dt
Vf

f � ÿ fT �frP
f ÿ 1

U0

�
Sfs

x
�rP � xxx dS� frf

fgrZ

� �mff � l 00f
f �fr�r � f�Vf

f ÿ Vs
s�� � rfr � Vs

sg

� mf
f�r2f�Vf

f ÿ Vs
s� � rVs

s� ÿ mf
f cf

r2
f

f�Vf
f ÿ Vs

s� � a �8�

where

Da

Dt
� @

@t
� Va � r

denotes the material derivative, which expresses the rate of change from the point of view of
an observer traveling at the velocity Va of the a phase, ra denotes the density of the a phase,
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gHZ denotes the gravity acceleration in the Z direction, mf
f and l 00f

f
denote, respectively, the

®rst and second ¯uid viscosities, cf denotes a shape factor, a denotes a tensor associated with
the matrix directional cosines and Df denotes the hydraulic radius of the pore spaces.

3.1.4. Porous medium momentum balance equation
By summing the macroscopic momentum balance equations for the ¯uid and for the

thermoelastic solid phases, the rate of momentum exchange across the solid±¯uid interface is
eliminated and we obtain the momentum balance equation for the porous medium as a whole
in the form

frf
f Df

Dt
Vf

f � �1ÿ f�rss
Ds

Dt
Vs

s � ÿ �frff � �1ÿ f�rss�grZ

� mf
f

f
�r2f�Vf

f ÿ Vs
s� � rr � f�Vf

f ÿ Vs
s��

� l 00f
f

f
rr � f�Vf

f ÿ Vs
s� � mf

f�r2Vs
s � rr � Vs

s �

� l 00f
frr � Vs

s ÿ rP f ÿ �ZrTS
s � m 0s

sr � eeesk � l 00s
sresk �9�

where I denotes a unit tensor, Ta
a
denotes the a-phase temperature, m 0s

s
, l 00s

s
and Z denote the

Lame's constants for a thermoelastic solid matrix, eeesk and esk denote its strain tensor and
volumetric strain, respectively, and associated with ws, its displacement vector, de®ned by

eeesk � 1
2 �rws � �rws�T�; �10�

esk � r � ws: �11�
In (9) we may introduce two new quantities, the bulk density, rb, given by

rb � frf
f � �1ÿ f�rss �12�

and sss 0s, the e�ective stress tensor for the thermoelastic solid matrix which its constitutive
relation reads,

sss 0s � l 00s
s
eskI� 2m 0seeesk ÿ �Z�Ts

s ÿ Ts0
s�I: �13�

In writing the macroscopic energy balance equations for the ¯uid and the solid phases, we
assume linear thermodynamics, omit external energy sources and the energy associated with the
¯uid shear tensor ttt (viscous dissipation) is assumed negligible, i.e. vttt:HVf vW vPH�Vf v. We thus
obtain the following.
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3.1.5. Fluid energy balance equation

@

@t
frf

f CfTf
f � �Vf

f�2
2

" #( )
� ÿ a�H�Tf

f ÿ Ts
s� � T�sP

f
Vs

s � rf

ÿ T�fr � �fP
f
Vf

f� ÿ 1

U0

�
Sfs

x
�
Vf

frP � x dS

ÿ r � frf
f CfTf

f � �Vf
f�2
2

" #
Vf

f

( )

� r � ffD�Hr�Cfrf
fTf

f� � flf
frTf

fg �14�

where Ca denotes the constant speci®c heat at constant volume for the ¯uid phase (a0f) or at
constant strain for a solid matrix (a0s), la

a
denotes the thermal conductivity for the a-phase,

a *H denotes the convection heat transfer coe�cient and D*H denotes the dispersive heat tensor
for the ¯uid.

3.1.6. Solid energy balance equation

@

@t
�1ÿf�rss CfTs

s� �Vs
s�2
2

" #( )
� ÿ a�H�Ts

sÿ Tf
f� ÿ T�sP

f
Vs

s � rf

� T�sr � ��1ÿ f�P f
Vs

s� � 1

U0

�
Sfs

x
�
Vf

frP � xxx dSÿr � �sss 0sV
s�

ÿ r � �1ÿ f�rss CsTs
s � �Vs

s�2
2

" #
Vs

s ÿ �1ÿ f�lssrTs
s

( )
:

�15�

3.1.7. Mathematical derivation of Forchheimer terms
In order to calculate the integrals appearing in equations (8), (14) and (15), Bear and

Bachmat (1990) assumed that the microscopic drag (associated with the shear stress tensor tfij
of the Newtonian ¯uid) and inertial forces at the solid±¯uid interface are much smaller than
the surface and body (gravity) forces, i.e.���� rf

@Vfj

@t
� rfVfi

@Vfj

@xi
ÿ @tfij
@xi

� �
xj

��������� @P

@xj
� rfg

@Z

@xj

� �
xj

����: �16�

Using (16) they calculated the integral in (8) and obtained a macroscopic term in the form,
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1

U0

�
Sfs

x
� rP � xxx dS � ÿfrffg�rZ�T�Iÿ T�f � �17�

where ( )T denotes the transpose of a vector.
For high ¯uid velocities, we suggest to include an inertial term to the RHS of (16) to read,���� rf

@Vfj

@t
ÿ @tfij
@xi

� �
xj

��������� @P

@xj
� rfg

@Z

@xj
� rfVfi

@Vfj

@xi

� �
xj

����: �18�

In view of (18), at the solid±¯uid interface (Sfs), we may assume

@P

@xj
xj � ÿ rfg

@Z

@xj
� rfVfi

@Vff

@xi

� �
xj: �19�

Integration over Sfs of the ®rst term on the RHS of (19), will yield the RHS term as in (17).
However, integration over Sfs of the second term on the RHS of (19) will read,

ÿ 1

U0

�
Sfs

x
�
irfVfk

@Vfj

@xk
xj dS

� 1

U0

�
Sfs

x
�
irf ÿ

1

2

@

@xj
�VfkVfk� � Vfk

@Vfk

@xj
ÿ @Vfj

@xk

� �� �
xj dS: �20�

We now refer to (2.6.33)±(2.6.39) in Bear and Bachmat (1990). We assume no slip conditions
at the solid±¯uid interface as well as being material at the microscopic level. By virtue of the
integral form of the mean value theorem, we also assume that there exist mean values for the
velocities of the RHS integral of (20). Hence, the ®rst RHS integral of (20) can be
approximated by

1

U0

�
Sfs

x
�
irf ÿ

1

2

@

@xj
�VfkVfk�

� �
xj dS

� ÿ 1

2U0

�
Sfs

x
�
irf
�VskVsk ÿ VfkVfk�

D
xj dS

� ÿ 1

2U0

�
Sfs

x
�
irf
�Vsk

s � Vfn
f��Vsj

s ÿ Vfj
f�

D
�djk ÿ xjxk� dS

� cf

2D2
f

frf
f ~Fijk�Vsk

s � Vfk

f�Vrj �21�

where D denotes a characteristic distance from the solid surface to the ¯uid within the pore
space, djk denotes the components of the Kronecker delta function and Vr (0Vf

fÿVs
s
) denotes

a relative velocity vector. We note that, Df (0U0f/SfS), the ¯uid hydraulic radius of the pore
spaces is also related to cfD. The components of the third rank tensor FÄijk is associated with
the matrix of directional cosines and the xÊ vector
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~Fijk � 1

Sfs

�
Sfs

x
�
i�djk ÿ xjxk� dS: �22�

Similarly as in (21), we approximate the ®rst part of the second RHS integral of (20) to read

1

U0

�
Sfs

x
�
irf Vfk

@Vfk

@xj

� �
xj dS �

cf

D2
f

frf
f ~FijkVsk

s
Vrj : �23�

To approximate the second part of the second RHS integral of (20), we also make use of (4)
and (5). We thus obtain

1

U0

�
Sfs

x
�
irf ÿVfk

@Vfj

@xk

� �
xj dS � ÿfrff Vsk

s @Vfj
f

@xk
�dij ÿ T*fij�: �24�

Furthermore, by virtue of (3), we write

f
@Vfj

f

@xk
� @

@xk
�fVfj

f� � 1

U0

�
Sfs

Vfjxj dS

� @

@xk
�fVfj

f� � ÿ @

@xk
�fVsj

s� � f
@Vsj

s

@xk

" #

� @

@xk
�fVrj� � f

@Vsj
s

@xk
:

�25�

Combining (21) and (23) to (25), we write (20) in the form,

ÿ 1

U0

�
Sfs

x
�
irfVfk

@Vfj

@xk
xj dS �

cf

2D2
f

frf
f ~FijkVrjVrk

ÿ rf
fVsk

s @

@xk
�fVrj� � f

@Vsj
s

@xk

" #
�dij ÿ T*fij�:

�26�

We note that the RHS of (26) can be neglected when Vs
sWVf

f
.

3.2. Multiphase porous media

Consider the mutual interactions between two ¯uid phases denoted by subscript ( )b with,
say, b0` for the liquid phase, b0 g for the gas phase and subscript ( )a for a0s the solid
phase. Let us assume Newtonian ¯uids, isentropic conditions, incompressible solid and a
deformable matrix, the solid±¯uids interfaces Ssb are subject to no slip conditions as well as
being material at the microscopic level, while the liquid±gas interface is assumed to be not
material at that level. We modify the macroscopic balance equations appearing in Bear and
Bachmat (1990) to read as follows.
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3.2.1. Liquid mass balance equation

@

@t
�y`r``� � ÿr � �y`r``V``� ÿ

1

Uo

�
S`g

r`�V` ÿ u� � xxx` dS: �27�

3.2.2. Gas mass balance equation

@

@t
�ygrgg� � ÿr � �ygrggVg

g� ÿ 1

Uo

�
S`g

rg�Vg ÿ u� � xxxg dS �28�

where s` denotes the storativity of the liquid phase, yb (b0`, g) and ys denotes the ¯uids and
solid volume fractions respectively, given by,

y` � s`f;

yg � �1ÿ s`�f;

ys � �1ÿ f�: �29�

3.2.3. Solid mass balance equation

@

@t
�ysrss� � ÿr � �ysrssVs

s�: �30�

3.2.4. Liquid momentum balance equation

y`r`
`D`V`

`

Dt
� ÿ y`T�`rP`

` ÿ 1

Uo

�
S`s�S`g

x
�rP` � xxx` dS� y`r`

`grZ

� �m`` � l 00̀
`�rr � �y`V``� � m`

`r2�y`V``�

� �m`` � l 00̀
`� r 1

U0

�
S`s�S`g

V` � xxx` dS
 !

� 1

Uo

�
S`s�S`g

r � V`xxx` dS
" #

� m`
` r � 1

Uo

�
S`s�S`g

V`xxx` dS

 !
� 1

Uo

�
S`s�S`g

rV` � xxx` dS
" #

: �31�
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3.2.5. Gas momentum balance equation

ygrg
g DgVg

g

Dt
� ÿ ygT�grPg

g ÿ 1

U0

�
Sgs�S`g

x
�rPg � xxxg dS� ygrg

g grZ

� �mgg � l00
g�rr � �ygVg

g� � mg
gr2�ygVg

g�

� �mgg � l 00g
g� r 1

U0

�
Sgs�S`g

Vg � xxxg dS
 !

� 1

U0

�
Ssg�S`g

r � Vgxxxg dS

"

� mg
g r � 1

U0

�
Sgs�S`g

Vgxxxg dS

 !
� 1

U0

�
Sgs�S`g

rVg � xxxg dS
" #

: �32�

Note that in (31) and (32) we neglect the sources of moment associated with the transfer of
mass through the liquid±gas interface.

3.2.6. Porous medium momentum balance equation

ysrs
s DsVs

s

Dt
� y`r`

`D`V`
`

Dt
� ygrg

g DgVg
g

Dt
� ÿ�ysrss � y`r`

` � ygrg
g�grZ

� �m`` � l 00̀
`�rr � �y`V``� � m`

`

f
r2�y`V``� ÿ s`rP`

� �mg
g � l 00g

g�
f

rr � �ygVg
g� � mg

g

f
r2�ygVg

g� ÿ �1ÿ s`�rPg

� 1

U0

�
S`g

�sss` ÿ sssg� � xxx` dS� m 0s
sr � eeesk � l 00s

sresk

� �m`` � l 00̀
`�r 1

U0

�
S`s�S`g

V` � xxx` dS
 !

� m`
`r � 1

U0

�
S`s�S`g

V`xxx` dS

 !

� �mgg � l 00g
gr 1

U0

�
Sgs�S`g

Vg � xxxg dS
 !

� mg
gr � 1

U

�
Sgs�S`g

Vgxxxg dS

 !
�33�

where sssb denotes the microscopic stress tensor of the b, (0`, g) ¯uid. We note that (33) is the
macroscopic form of the porous medium as a whole and does not represent the summation of
(31) and (32). Note also that the second line in the RHS of (33) accounts for the liquid
macroscopic stress, while the third RHS line accounts for the gas macroscopic stress.
The exchange terms at the phases interfaces still need to be addressed. In, e.g. (27) for R

components being transfered from the liquid phase to the gas phase, Bear and Bachmat (1990)
suggest a constitutive expression in the form,
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1

U0

�
S`g

r`�V` ÿ u� � xxx` dS �
X
r

a�R�rR`
` ÿ rRg

g� �34�

in which a*R denotes a transfer coe�cient and r R
b denotes the density of the R component in

the b ¯uid so that,

rb �
X
R

rRb: �35�

Since the liquid±gas interface is assumed to be non-material, the terms associated with the
transfer of momentum between the ¯uid phases in (31), (32) and (33) read,

1

U0

�
Ssb�S`g

Vb � xxxb dS � Vs
s � ryb � 1

U0

�
S`g

�Vb ÿ Vs
s� � xxxb dS; �36�

1

U0

�
Ssb�S`g

Vbxxxb dS � Vs
sryb � 1

U0

�
S`g

�Vb ÿ Vs
s�xxxb dS; �37�

1

U0

�
Ssb�S`g

r � Vbxxxb dS � ÿr � Vb
bryb; �38�

1

U0

�
Ssb�S`g

rVb � xxxb dS � ÿ
csb

D2
sb

a � Vb
b ÿ c`g

D2
`g

a � Vb
b ÿ 1

S`g

�
S`g

u dS

 !
�39�

where csb denotes a shape factor associated with the b ¯uid at the Ssb interface, c`g denotes a
shape factor of the liquid and gas ¯uids at their S`g interface, Dsb and D`g denote the hydraulic
radius of the pore spaces associated with the Ssb and S`g interfaces, respectively, de®ned by,

D sb � U0b=Ssb;D`g � Usb=S`g: �40�

The estimate of the integral expressions in the RHS of (36), (37) and (39) will be reported in
the future. In the following we will present a rigorous mathematical evaluation of the integral
expression in (31) and (32) leading to the Darcy and Forchheimer terms.

3.2.7. Mathematical derivation of Forchheimer terms
Basically, to a certain extent, we follow the same procedure as in the case of the saturated

porous medium. With multi-¯uids on hand we will, however, elaborate on the mathematical
derivations. As in Bear and Bachmat (1990) we assume that the microscopic drag and inertial
forces for the b (0`, g) ¯uids at the gas±liquid interface are much smaller than those of the
surface and body (gravity) forces, i.e.���� rb

@Vbj

@t
� rbVbi

@Vbj

@xi
ÿ @tbij
@xi

� �
xj

����� ���� @Pb

@xj
� rbg

@Z

@xj

� �
xj

����: �41�
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Unlike Bear and Bachmat (1990), similar to (18) at the solid±¯uid (Ssb) interfaces, assuming

high ¯uid velocity in comparison to that of the solid, the following conditions will prevail,���� rb
@Vbj

@t
ÿ @tbij
@xi

� �
xj

����� ���� @Pb

@xj
� rbg

@Z

@xj
� rbVbi

@Vbj

@xi

� �
xj

����: �42�

Hence, in view of (42), at the SSb interfaces we may assume,

@Pb

@xj
xj � ÿ rbg

@Z

@xj
� rbVbi

@Vbj

@xi

� �
xj: �43�

In view of (41) and (42), the integration of (43) over the (Ssb+S`g) interfaces reads,

1

U0

�
Ssb�S`g

x
�
i
@Pb

@xj
xbj dS � ÿrbb gd3j

1

U0

�
Ssb�S`g

x
�
ixbj dSÿ

1

U0

�
x
�
irbVbk

@Vbj

@xk
xbj dS

� ÿybrbb g�d3j ÿ T*b3i
� ÿ 1

Uo

�
Ssb

x
�
irbVbk

@Vbj

@xk
xbj dS

�44�

in which, by following Bear and Bachmat (1990) we write,

1

U0

�
Ssb�S`g�Sbb

x
�
ixbj dS � dij: �45�

The integration appearing in (44) over the Ssb interface can be rewritten in the form,

ÿ 1

U0

�
Ssb

x
�
irbVbk

@Vbj

@xk
xbj dS

� 1

U0

�
Ssb

x
�
irb ÿ

1

2

@

@xj
�VbkVbk� � Vbk

@Vbk

@xj
ÿ @Vbj

@xk

� �� �
xbj dS: �46�

The ®rst term of the RHS integral of (46) can be estimated at the Ssb interfaces by,

@

@xj
�VbkVbk�xbj

����
Ssb

� VskVsk ÿ VbkVbk

Dc
sb

����
Ssb

� �Vsk � Vbk��Vsj ÿ Vbj�
Dc
sb

�dkj ÿ xbkxbj� �47�

where Dc
sb denotes a characteristic distance from the solid surface to each b ¯uid within the

pore space. In view of (47), we estimate the ®rst RHS integral of (46) to read,

ÿ 1

2U0

�
Ssb

x
�
irb

@

@xj
�VbkVbk�xbj dS

� ÿ 1

2U0

�
Ssb

x
�
irb
�Vsk � Vbk��Vsj ÿ Vbj�

Dc
sb

�dkj ÿ xbkxbj� dS

� csb

2D2
sb

ybrb
b ~Fsb

ijk�Vsk
s � Vbk

b�Vrbj

�48�
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where csb, D
c
sb and Dsb are related by,

Dsb � csbD
c
sb; �49�

the relative velocity vector between the b ¯uid phase and the solid phase is denoted by Vrb

(0Vb
fÿVs

s
) and FÄ sbijk denotes the components of the Forchheimer third rank tensor associated

with the b ¯uid at the Ssb interface, given by,

~F
sb
ijk �

1

Ssb

�
Ssb

x
�
i�dkj ÿ xbkxbj� dS: �50�

In writing the second RHS expression of (48), we made use of the integral form of the mean
value theorem.
The second RHS integral of (46) is similarly estimated to read,

1

U0

�
Ssb

x
�
irbVbk

@Vbk

@xj
ÿ @Vbj

@xi

� �
xbj dS

� ÿ cb

D2
b

ybrb
b ~F sb

ijkVsk

s
Vrbj ÿ ybrb

b Vsk

s @Vbj
b

@xk
�dij ÿ T*bij

�: �51�

Similar to (25), we can write

yb
@Vbj

b

@xk
� @

@xk
�ybVrbj� � yb

@Vsj
s

@xk
: �52�

In view of (48), (51) and (52) we write (46) in the form

ÿ 1

U0

�
Ssb

x
�
irbVbk

@Vbj

@xk
xbj dS

� csb

2D2
sb

rb
b ~F sb

ijkVrbkVrbj ÿ rb
b Vsk

s @

@xk
�ybVrbj� � yb

@Vsj
s

@xk

" #
�dij ÿ T*bij

�: �53�

Note that the second RHS term in (53) can be neglected if we assume that Vs
sWVf

f
.

Pressure gradients and Forchheimer terms expressing the exchange between the phases
through their interfaces, govern the change in the wave velocity and its amplitude.
Forchheimer terms may be regarded as source terms coupling between the solid and ¯uid
momentum and energy balance equations. The coupling of these equations dictates the
simultaneous change in the ¯uids inertia via changes in pressure gradient and Forchheimer's
terms. The ®rst a�ects the solid matrix e�ective stress towards equalization between the solid
and ¯uids stresses. The second provides a mechanism for shifting momentum ¯ux from the
¯uids to the solids, towards equalization between solid and ¯uid velocities. This, in turn, results
in changes in the solid inertia.
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In what follows, we will describe the roll of Forchheimer terms by comparing shock tube
experiments and numerical simulation of compaction waves traveling through a 1-D saturated
thermoelastic porous medium.
From hereafter we will refer to the macroscopic equations and, accordingly, will omit the
� �a (or the � �b) designators.

4. Compaction waves in a 1-D saturated thermoelastic porous medium

Following the abrupt onset of the ¯uid's pressure and temperature, Levy et al. (1995)
provided a dimensional analysis of the phases macroscopic balance equations, presented in the
previous section. This analysis yielded four evolution periods (time intervals) associated with
di�erent dominant balance equations for the ¯uid and solid phases. During the second time
interval, compaction wave equations were formed. The 1-D compaction wave equations
resulting from (6±9, 14, 15) balance equations (Levy et al., 1996) when written in a vector form
(using new variables) are as follows,

@U

@t
� @F
@x
� Q: �54�

The variable vector, U, is de®ned by

U � �rf; rs;mf;ms;Ef;Es�T �55�
where

rf � frf mf � rfVf Ef � rfef � rf CfTf � V2
f

2

� �
;

rs � �1ÿ f�rs ms � rsVs Es � rses � rs CsTs � V2
s

2

� �
:

�56�

ea denotes the total energy per mass unit of the a phase.
The ¯ux vector, F, is given by

F �

mf

m2
f

rf
� T*f fP

m2
s

rs
ÿ s 0s � �1ÿ fT*f �P
mf

rf
�Ef � T*f fP�

ms

rs
�Es ÿ s 0s � �1ÿ fT*f �P�

2666666666666664

3777777777777775
: �57�
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The source vector, Q, is given by

Q �

0
0

T*f P
@f
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ÿ ~Frf
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���� mf
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����mf
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�58�

in which FÄ denotes the Forchheimer coe�cient for an isotropic solid matrix. The pressure P, is
prescribed by the equation of state,

fP � �gÿ 1� Ef ÿm2
f

2rf

� �
�59�

where g denotes the speci®c heat capacities ratio of the ¯uid phase.

In view of (13) we can express the constitutive relation for the e�ective stress s 0s, in the form

s 0s � Eeesk ÿ ETCs�Ts ÿ Ts0� �60�
in which Ee (0l 00s +m 0s) and ET (0Z/Cs) are the one dimensional macroscopic Lame coe�cients
for a thermoelastic solid. The porosity, f, and the skeleton strain, esk, can be expressed as,

f � 1ÿ rs=rs;

esk � 1ÿ rs=rs0:
�61�

Hence, the e�ective stress, s 0s, can be rewritten to read

s 0s � Ec
rs0 ÿ rs
rs0

� �
ÿ ET

Es

rs
ÿ Es0

rs0
ÿ m2

s

2r2s
� m2

s0

2r2s0

� �
�62�

where, the subscript ( )s0 denotes the solid properties at an initial state.

The set (54) of six partial di�erential governing equations de®ned by (55), (57) and (58) are
to be solved for six unknowns namely; rf , rs, mf , ms, Ef and Es. Consequently, in principle,
given the apropriate conditions, the set is complete and can be solved. However, due to the
complexity of the equations, an analytical solution of the set is not feasable. Instead, a
numerical solution has been performed.

Note that in writing (54) we assumed that the gradients of the porosity were very small and
therefor they might be written as source terms in the source vector, Q, given by (58). As a
result, the source vector, Q, contains derivative terms and thus a�ects the character of the
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equations (hyperbolic rather then elliptic±hyperbolic). This is very convenient for numerical
purposes and is correct only when the gradients of the porosity are very small as is the case in
this study. Applying this procedure removes the ill-posedness associated with the elliptic±
hyperbolic character of the equations which is usually manifested in highly oscillatory solutions
as the mesh is re®ned.
The numerical scheme for solving (54) is reported in Levy (1995) and Levy et al. (1996). It is

based on an upwind TVD shock-capturing scheme, originally developed by Harten (1983),
which was extended to solve the problem of compaction waves propagation in saturated
thermoelastic porous media.

5. Comparison between the numerical predictions and the experimental results

In order to validate the physical model and the numerical code, the governing equations
were solved numerically for di�erent samples and a variety of initial conditions and compared
to experimental results. In order to solve the governing equations and compare the solution to
the experimental results, the various parameters which appear in the physical model, namely:
the macroscopic Lame coe�cients for a thermoelastic solid, Ee and ET, the Forchhiemer factor,
FÄ, the ¯uid tortuosity, T*f , and the intrinsic density of the solid matrix, rs, which appear in the
physical model, had to be estimated for each sample. Based on the properties of the materials
of which the samples were made and the fact that the upper limit of the elastic stress reduces
when the porosity increases, in a (1ÿ f)2 manner, (Gibson and Ashby, 1988) the magnitudes
of the macroscopic Lame coe�cients, Ee and ET, were estimated to be identical for all the
samples, Ee=380�107 Pa and ET=26.207 Kg/m3.
The sensitivity of the predictions of the numerical code to these coe�cients will be reported

in a future study. The intrinsic density of the solid matrix for all the samples (silicon carbide,
SiC, and alumina, Al2O3), as provided by the manufacturer, was rs=2000260 Kg/m3.
The tortuosity factors, T*f for the various samples were found by estimating the ratio

between the speed of sound of the air inside the porous medium af and that in pure air a (Li et
al., 1995),

af
a

� �2
� �1ÿ T*f � gT*f �T*f

g
: �63�

The Forchheimer factors, FÄ, for the various samples where found experimentally. In these
experiments, each sample was mounted in a pipe and the pressure drop across it was measured
as a function of the air ¯ow rate. The pressure drop was found to be a parabolic function of
the air velocity. This was done by assuming that the pressure drop depends linearly on the
length of the sample. The values of the tortuosity and the Forchhiemer factors, as obtained
experimentally for the various samples, are presented in Table 1.
In order to validate the physical model, (54) was solved numerically, for di�erent samples

and initial conditions, and compared to experimental results. Table 2 represents the initial
conditions of 18 di�erent experiments. The comparison between the predictions of the
numerical simulations and the experimental results, for all the cases appearing in Table 2, are
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given in Levy (1995). In what follows, we will present two of these comparisons the
experiments of which are listed in Table 2 as test numbers 1 and 13.
Fig. 1(a)±(e) and 2(a)±(e) represent typical experimental results and their numerical

simulations for SiC and Al2O3 samples, respectively. P1 is the pressure ahead of both the
incident and the transmitted shock waves, P2 is the theoretical pressure which should have
been reached behind the incident shock wave, and P5 is the theoretical pressure which should
have been reached had the incident shock wave re¯ected head-on from a solid surface. The
symbols represent the experimental results, the solid lines are the numerically predicted values
when accounting for Forchheimer terms and the dash-dot lines represent the simulations
without Forchheimer terms. The pressure histories of the pure gas just ahead of the front edge
of the porous sample are shown in Fig. 1(a) and (b) for the SiC and 2(a) for the Al2O3. The
pressure histories of the gas occupying the pores of the porous material along the shock tube
side-wall and at its end-wall are shown in Fig. 1(c)±(e) for the SiC samples and 2(a)±(e) for the

Table 1
The Forchheimer and the tortuosity factors, porosity and sample length for the di�erent samples

The sample
material

Sample
type

Pores per
inch (ppi)

FÄ

(1/m)
T*
f f Sample length

(mm)

Silicon carbide I 10 300 0.7 0.72820.016 40, 60, 81
(SiC) II 20 500 0.7 0.74520.001 41, 62, 83
Alumina III 30 900 0.75 0.81420.010 48, 93

(Al2O3) IV 40 1800 0.75 0.82120.007 50, 99

Table 2
The initial conditions for the various experiments

Test Sample Sample Initial Initial Shock Mach
number material length (mm) pressure (KPa) temperature (K) numberÐMi

1 40 83.04 290.0 1.378

2 SiC 60 83.11 290.5 1.385
3 81 83.41 290.5 1.377
4 10 ppi 81 83.71 289.5 1.543

5 81 83.70 290.5 1.734
11 48 82.84 292.0 1.374
12 Al2O3 93 83.41 290.5 1.377
13 30 ppi 93 83.36 291.0 1.539

14 93 83.12 291.5 1.744
15 50 83.09 292.0 1.374
16 Al2O3 50 83.08 292.5 1.545

17 40 ppi 50 83.10 292.5 1.741
18 99 83.16 290.5 1.377
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Fig. 1. Typical experimental results and their numerical simulations with a 40 mm long sample made of SiC having

10 pores per inch (sample I in Table 1). The incident shock wave Mach number in this experiment was Mi=1.378
(test number 1 in Table 2). The pressure histories of the pure gas just ahead of the front edge of the porous material
are shown in Fig. 1(a) and 2(b). The pressure histories of the gas occupying the pores of the porous material along

the shock tube side-wall and at its end-wall are shown in Fig. 1(c)±(e), respectively. The symbols represent the
experimental results, the solid lines are the numerically predicted values when accounting for Forchheimer terms
and the dash±dot lines represent the simulations without Forchheimer terms. P1 is the pressure ahead of both the
incident and the transmitted shock waves, P2 is the theoretical pressure which should have been reached behind the

incident shock wave, and P5 is the theoretical pressure which would have been reached had the incident shock wave
re¯ected head-on from a solid end-wall.
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Fig. 2. Typical experimental results and their numerical simulations with a 93 mm long sample made of Al2O3

having 30 pores per inch (sample III in Table 1). The incident shock wave Mach number in this experiment was

Mi=1.539 (test number 13 in Table 2). The pressure histories of the pure gas just ahead of the front edge of the
porous material are shown in Fig. 2(a). The pressure histories of the gas occupying the pores of the porous material
along the shock tube side-wall and at its end-wall are shown in Fig. 2(b)±(e), respectively. The symbols represent the

experimental results, the solid lines are the numerically predicted values when accounting for Forchheimer terms
and the dash±dot lines represent the simulations without Forchheimer terms. P1, P2, and P5 are de®ned in the
caption of Fig. 1.
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Al2O3 samples. Figs. 1 and 2, clearly emphasize the advantage of simulations with
Forchheimer terms in retrieving the experimental observations. Major di�erences between the
two cases are evident. While the simulations without Forchheimer terms, (dashed doted lines)
do not agree with the experimental results, simulations with Forchheimer terms (solid lines)
results in predictions which excellently reproduce the experiments. When Forchheimer terms
are neglected, the shock waves which are refelected, head-on, from the front edge of the
porous sample, are weaker than those obtained when the Forchheimer terms are accounted
for [compare the second jump in the pressure traces shown in Fig. 1(a), (b) and 2(a)]. These
®gures also indicate that when the Forchheimer terms are neglected, a sharp shock wave is
transmitted at a later time from the porous material into the gaseous phase resulting in a
third jump in pressure longer than P5. These high pressures are later decayed by the
transmitted expansion waves and reach, as expected, the value of P5. In addition, as a result
of the neglection of the Forchheimer terms, the shock waves which are transmitted into the
porous material samples do not develop a dispersed structure, as is the situation in reality.
Instead, they maintain their sharp fronts. The fact that the transmitted shock waves maintain
their sharp structure results in a jump to pressures larger than P2 behind them [see the sharp
jumps in the pressures inside the porous samples in Fig. 1(c), (d), 2(c), (d)]. Fig. 1(e) and
2(e) in which the pressure histories at the back edge of the porous samples (i.e. at the shock
tube end-wall) are shown again, indicate that when the Forchheimer terms are neglected, in
contrast to the experimental results, sharp shock waves reach the end-wall. The reason for
the above mentioned di�erences lies in the fact that the Forchheimer terms emphasize the
friction between the two phases and, as a result, increase the rate of momentume exchange.
This in turn results in a situation in which much larger impulses, fP dt, are predicted
numerically when the Forchheimer terms are neglected.
It is clearly evident from these comparisons that the agreement between the experimental

results and the numerical predictions is very good. Note that there are disagreements
between the numerical and the experimental positions of the re¯ected shock wave after it
traveled a relatively long distance from the front edges of the samples [see Fig. 1(a) and
2(a)]. The agreement regarding the re¯ected shock wave position was better in the case of
low incident shock wave Mach numbers and short samples. This may be caused by the way
the porosity gradient terms were treated in the source vector, Q.
Although Fig. 1(a)±(e) and 2(a)±(e) describe the results of only two typical experiments,

one in the silicon-carbide (SiC) sample and one in an alumina (Al2O3) sample, similar good
to excellent agreements were obtained in the comparisons with all the experiments which
were conducted in the course of the present study (Levy, 1995).
It should be noted that there are two types of transversal waves which propagate in

porous media. The reason for this is the di�erent compressibility of the porous skeleton and
the ¯uid which saturates it. They are known as ``fast'' and ``slow'' waves. The fast wave, i.e.
the compaction wave, propagates through the skeleton and the slow one, i.e. the transmitted
wave, through the ¯uid occupying the pores. When the values of the compressibility are very
di�erent, as is the case in this study, the amplitudes of these two waves are very di�erent
and hence the in¯uence of the fast wave on the ¯uid cannot be observed. For this reason the
fast wave is not evident in Figs. 1 and 2 where the ¯uid pressure is shown. Had the solid
stress been presented, both waves would have been recorded as was shown by Levy et al.
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(1997). Hence, the analytical model and the computer code presented and used in this study
are, in fact, capable of reproducing both the fast and the slow waves.

6. Conclusions

Macroscopic balance equations of mass and momentum are described for the case of
multiphase porous media. To these, we add the energy balance equation when considering the
case of saturated thermoelastic porous media.
For both cases, we show that microscopic terms of inertia should be accounted for at the

interfaces between the solid phase and the ¯uid phases. These microscopic terms are then
developd into macroscopic ones by rigorous mathematical evaluations leading to Forchheimer
terms. The macroscopic terms represent sources of momentum and energy that are exchanged
between the ¯uid phases and the solid phase, at their solid±¯uid interfaces.
Numerical simulations of compaction waves in a 1-D saturated porous medium, were

compared with shock tube experiments. These simulations were done with and without
Forchheimer terms. The case of accounting for Forchheimer terms demonstrates almost no
deviation from experimental results and was, by far, better then the case when we did not
include these terms.
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